Перевод: со всех языков на английский

с английского на все языки

The Chemical Industry During the Nineteenth Century

  • 1 Tennant, Charles

    [br]
    b. 3 May 1768 Ochiltree, Ayrshire, Scotland
    d. 1 October 1838 Glasgow, Scotland
    [br]
    Scottish inventor of bleaching powder.
    [br]
    After education at the local school, Tennant went to Kilbachan to learn the manufacture of silk. He then went on to Wellmeadow, where he acquired a knowledge of the old bleaching process, which enabled him to establish his own bleachfield at Darnly. The process consisted of boiling the fabric in weak alkali and then laying it flat on the ground to expose it to sun and air for several months. This process, expensive in time and space, would have formed an intolerable bottleneck in the rapidly expanding textile industry, but a new method was on the way. The French chemist Berthollet demonstrated in 1786 the use of chlorine as a bleaching agent and James Watt learned of this while on a visit to Paris. On his return to Glasgow, Watt passed details of the new process on to Tennant, who set about devising his own version of it. First he obtained a bleaching liquor by passing chlorine through a stirred mixture of lime and water. He was granted a patent for this process in 1798, but it was promptly infringed by bleachers in Lancashire. Tennant's efforts to enforce the patent were unsuccessful as it was alleged that others had employed a similar process some years previously. Nevertheless, the Lancashire bleachers had the good grace to present Tennant with a service of plate in recognition of the benefits he had brought to the industry.
    In 1799 Tennant improved on his process by substituting dry slaked lime for the liquid, to form bleaching powder. This was patented the same year and proved to be a vital element in the advance of the textile industry. The following year, Tennant established his chemical plant at St Roll ox, outside Glasgow, to manufacture bleaching powder and alkali substances. The plant prospered and became for a time the largest chemical works in Europe.
    [br]
    Further Reading
    L.F.Haber, 1958, The Chemical Industry During the Nineteenth Century, London: Oxford University Press.
    F.S.Taylor, 1957, A History of Industrial Chemistry, London: Heinemann.
    Walker, 1862, Memoirs of Distinguished Men of Science of Great Britain Living in 1807– 1808, London, p. 186.
    LRD

    Biographical history of technology > Tennant, Charles

  • 2 Maxwell, James Clerk

    [br]
    b. 13 June 1831 Edinburgh, Scotland
    d. 5 November 1879 Cambridge, England
    [br]
    Scottish physicist who formulated the unified theory of electromagnetism, the kinetic theory of gases and a theory of colour.
    [br]
    Maxwell attended school at the Edinburgh Academy and at the age of 16 went on to study at Edinburgh University. In 1850 he entered Trinity College, Cambridge, where he graduated four years later as Second Wrangler with the award of the Smith's Prize. Two years later he was appointed Professor at Marischal College, Aberdeen, where he married the Principal's daughter. In 1860 he moved to King's College London, but on the death of his father five years later, Maxwell returned to the family home in Scotland, where he continued his researches as far as the life of a gentleman farmer allowed. This rural existence was interrupted in 1874 when he was persuaded to accept the chair of Cavendish Professor of Experimental Physics at Cambridge. Unfortunately, in 1879 he contracted the cancer that brought his brilliant career to an untimely end. While at Cambridge, Maxwell founded the Cavendish Laboratory for research in physics. A succession of distinguished physicists headed the laboratory, making it one of the world's great centres for notable discoveries in physics.
    During the mid-1850s, Maxwell worked towards a theory to explain electrical and magnetic phenomena in mathematical terms, culminating in 1864 with the formulation of the fundamental equations of electromagnetism (Maxwell's equations). These equations also described the propagation of light, for he had shown that light consists of transverse electromagnetic waves in a hypothetical medium, the "ether". This great synthesis of theories uniting a wide range of phenomena is worthy to set beside those of Sir Isaac Newton and Einstein. Like all such syntheses, it led on to further discoveries. Maxwell himself had suggested that light represented only a small part of the spectrum of electromagnetic waves, and in 1888 Hertz confirmed the discovery of another small part of the spectrum, radio waves, with momentous implications for the development of telecommunication technology. Maxwell contributed to the kinetic theory of gases, which by then were viewed as consisting of a mass of randomly moving molecules colliding with each other and with the walls of the containing vessel. From 1869 Maxwell applied statistical methods to describe the molecular motion in mathematical terms. This led to a greater understanding of the behaviour of gases, with important consequences for the chemical industry.
    Of more direct technological application was Maxwell's work on colour vision, begun in 1849, showing that all colours could be derived from the three primary colours, red, yellow and blue. This enabled him in 1861 to produce the first colour photograph, of a tartan. Maxwell's discoveries about colour vision were quickly taken up and led to the development of colour printing and photography.
    [br]
    Bibliography
    Most of his technical papers are reprinted in The Scientific Papers of J.Clerk Maxwell, 1890, ed. W.D.Niven, Cambridge, 2 vols; reprinted 1952, New York.
    Maxwell published several books, including Theory of Heat, 1870, London (1894, 11th edn, with notes by Lord Rayleigh) and Theory of Electricity and Magnetism, 1873, Oxford (1891, ed. J.J.Thomson, 3rd edn).
    Further Reading
    L.Campbell and W.Garnett, 1882, The Life of James Clerk Maxwell, London (the standard biography).
    J.J.Thomson (ed.), 1931, James Clerk Maxwell 1831–1931, Cambridge. J.G.Crowther, 1932, British Scientists of the Nineteenth Century, London.
    LRD

    Biographical history of technology > Maxwell, James Clerk

См. также в других словарях:

  • History of the United States — The United States is located in the middle of the North American continent, with Canada to the north and Mexico to the south. The United States ranges from the Atlantic Ocean on the nation s east coast to the Pacific Ocean bordering the west, and …   Wikipedia

  • The Begum's Fortune — infobox Book | name = The Begum s Fortune title orig = Les Cinq cents millions de la Bégum translator = unknown (1879), W. H. G. Kingston (1879), I. O. Evans (1958), Stanford L. Luce (2005) author = Jules Verne illustrator = Léon Benett cover… …   Wikipedia

  • History of science and technology in the People's Republic of China — For more than a century China s leaders have called for rapid development of science and technology, and science policy has played a greater role in national politics in China than in many other countries. China s scientific and technical… …   Wikipedia

  • History of trade of the People's Republic of China — Trade has been a very significant factor of the People s Republic of China s economy. In the twenty five years that followed the founding of the People s Republic of China in 1949, China s trade institutions were built into a partially modern but …   Wikipedia

  • 19th century — For other uses, see 19th century (disambiguation). Millennium: 2nd millennium Centuries: 18th century · 19th century · 20th century Decades: 1800s 1810s 18 …   Wikipedia

  • agricultural sciences, the — Introduction  sciences dealing with food and fibre production and processing. They include the technologies of soil cultivation, crop cultivation and harvesting, animal production, and the processing of plant and animal products for human… …   Universalium

  • History of trade for the People's Republic of China — Trade has been a very significant factor of the People s Republic of China s economy. In the twenty five years that followed the founding of the People s Republic of China in 1949, China s trade institutions were built into a partially modern but …   Wikipedia

  • History of the petroleum industry in Canada (natural gas) — Natural gas has been used almost as long as crude oil in Canada, but its commercial development was not as rapid. This is because of special properties of this energy commodity: it is a gas, and it frequently contains impurities. The technical… …   Wikipedia

  • Over-the-Rhine — This article is about the Cincinnati neighborhood. For the Ohio based band, see Over the Rhine (band). Over the Rhine Historic District U.S. National Register of Historic Places …   Wikipedia

  • Agriculture in the Empire of Japan — (農業政策, Nōgyō seisaku?) was an important component of the pre war Japanese economy. Although Japan had only 16% of its land area under cultivation before the Pacific War, over 45% of households made a living from farming. Japanese cultivated land… …   Wikipedia

  • Culture of the United Kingdom — The Proms is an eight week summer season of daily orchestral classical music concerts, on the last night with some traditional patriotic music of the United Kingdom.[1][2] …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»